Specific Affinity Enrichment of Electrochemically Cleaved Peptides Based on Cu(II)-Mediated Spirolactone Tagging
نویسندگان
چکیده
Specific digestion of proteins is an essential step for mass spectrometry-based proteomics, and the chemical labeling of the resulting peptides is often used for peptide enrichment or the introduction of desirable tags. Electrochemical oxidation yielding specific cleavage C-terminal to tyrosine (Tyr) and tryptophan (Trp) residues provides a potential alternative to enzymatic digestion and a possibility for further chemical labeling by introducing reactive spirolactone moieties. However, spirolactone-containing peptides suffer from low stability due to hydrolysis and intramolecular side reactions. We found that Cu(II) ions stabilize the spirolactone and prevent intramolecular side reactions during chemical labeling, allowing efficient chemical tagging with a reduced excess of labeling reagent without intramolecular side reactions. On the basis of this reaction, we developed an analytical procedure combining electrochemical digestion, Cu(II)-mediated spirolactone biotinylation, and enrichment by avidin affinity chromatography with mass spectrometry. The method was optimized with the tripeptide LWL and subsequently applied to chicken egg white lysozyme, in which one biotinylated electrochemistry (EC)-cleaved peptide was identified after affinity enrichment. This proof-of-principle shows that specific enrichment of electrochemically cleaved spirolactone-containing peptides can be used for protein identification and notably that inclusion of Cu(II) ions is essential for stabilizing spirolactones for subsequent biotinylation.
منابع مشابه
Efficient and Selective Chemical Labeling of Electrochemically Generated Peptides Based on Spirolactone Chemistry.
Specific digestion of proteins is an essential step for mass spectrometry-based proteomics, and the chemical labeling of the resulting peptides is often used for peptide enrichment or the introduction of desirable tags. Cleavage of the peptide bond following electrochemical oxidation of Tyr or Trp results in a spirolactone moiety at the newly formed C-terminus offering a handle for chemical lab...
متن کاملA methodology for simultaneous fluorogenic derivatization and boronate affinity enrichment of 3-nitrotyrosine-containing peptides.
We synthesized and characterized a new tagging reagent, (3R,4S)-1-(4-(aminomethyl)phenylsulfonyl)pyrrolidine-3,4-diol (APPD), for the selective fluorogenic derivatization of 3-nitrotyrosine (3-NT) residues in peptides (after reduction to 3-aminotyrosine) and affinity enrichment. The synthetic 3-NT-containing peptide, FSAY(3-NO(2))LER, was employed as a model for method validation. Furthermore, ...
متن کاملIn-situ preconcentration, and electrochemical sensing of zinc(II) and copper(II) based on ionic liquid mediated hollow fiber-modified pencil graphite electrode using response surface methodology
A single-use electrochemical sensor using ionic liquid mediated hollow fiber-graphite working electrode was fabricated for the first time. The screening tool was developed by coupling this electrode with differential pulse voltammetry (DPV) for in-situ pre-concentration and determination of Zn(II) and Cu(II). In our plot, porous polypropylene hollow fiber membrane was divided into pieces of 2 c...
متن کاملEndoprotease profiling with double-tagged peptide substrates: a new diagnostic approach in oncology.
BACKGROUND The measurement of disease-related proteolytic activity in complex biological matrices like serum is of emerging interest to improve the diagnosis of malignant diseases. We developed a mass spectrometry (MS)-based functional proteomic profiling approach that tracks degradation of artificial endoprotease substrates in serum specimens. METHODS The synthetic reporter peptides that are...
متن کاملIn-situ preconcentration, and electrochemical sensing of Zinc(II) and Copper(II) based on ionic liquid mediated hollow fiber-modified pencil graphite electrode using response surface methodology
A single-use electrochemical sensor using ionic liquid mediated hollow fiber-graphite working electrode was fabricated for the first time. The screening tool was developed by coupling this electrode with differential pulse voltammetry (DPV) for in-situ pre-concentration and determination of Zn(II) and Cu(II). In our plot, porous polypropylene hollow fiber membrane divided into pieces of 2 cm, t...
متن کامل